Large-scale Refractory Plasmonic Nanofurnaces for Chemistry and Solar-thermal Devices

Back to all technologies
Download as PDF
2019-SHAL-68606
Heat generation and management are among the most critical issues on a global scale. However, solar-thermal heat generation only accounts for a small portion of renewable heat generation, highlighting the need for the development of more efficient, large-scale, solar-to-heat energy conversion technologies. Researchers at Purdue University have developed refractory thermoplasmonic nanofurnace films capable of reaching high temperatures under solar irradiation. Whereas many current solutions have low stability at high temperatures or are not easily scalable, this technology has been shown to be stable up to around 600⁰C while being fabricated on a square centimeter scale and have a solar-to-heat conversion efficiency of approximately 68 percent. Furthermore, this technologies well-defined geometric arrangements of metal and dielectric nanostructures may provide designed metamaterials with near-unity absorption of light within a broad or limited spectral range. This large-scale, efficient refractory thermoplasmonic nanofurnace film can be utilized in solar energy conversion or chemical processes.

Advantages:
-Large-scale
-High temperature stable
-Near-unity absorption

Potential Applications:
-Refractory thermoplasmonic nanofurnace films
-Solar energy conversion
-Chemical processes
May 3, 2019
Provisional-Patent
United States
(None)
(None)
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org