Deterministic Optical Quantum Logic with Multiple High-Dimensional Degrees of Freedom in a Single Photon

Back to all technologies
Download as PDF
Quantum computation promises to enable the simulation of complex quantum mechanical systems which are impossible to realize with our current computing infrastructure. Quantum computation using optical states consists of making photons interact with one another, which leads to a probabilistic process, hence not scalable. Currently, deterministic quantum gates use different degrees of freedom in a single photon, utilizing two-dimensional encoding per each degree of freedom, thus failing to exploit the full information capacity of single photons while having very limited Hilbert space dimensions.

Researchers at Purdue University have developed deterministic single- and two-qudit optical quantum gates in a single photon. By proposing a scalable scheme to execute quantum gates, this technology can implement quantum computing algorithms in large Hilbert spaces. This technology can help producers of optical quantum processors who want to demonstrate quantum computing algorithms in the optical domain.

-Scalable scheme
-Implementations in large Hilbert spaces
-Exploits full information capacity of single photons

Potential Applications:
-Near-term quantum computing
-Optical quantum processors
May 8, 2020
Utility Patent
United States

May 10, 2019
United States
Purdue Office of Technology Commercialization
The Convergence Center
101 Foundry Drive, Suite 2500
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486