Phase Transforming Cellular Materials

Track Code: 2018-ZAVA-68252

Categories:
- Computer Technology

Keywords:
- Bistable
- Computer Technology
- Energy dissipation
- Phase transformation

The majority of cellular materials have one stable configuration; therefore, changes in cellular geometry as a result of an applied load will typically be limited either by the desire to prevent permanent deformation, or the fact that the return to the original stable configuration is impossible. There is an unmet need for a material structure that has a more stable configuration.

Researchers at Purdue University have developed a phase transforming cellular material (PXCM) that takes the idea of phase transformations and applies them to the unit cell. A structure made of these cells that is being deformed will undergo phase changes before plastic deformation occurs. To improve this, the unit cell can be designed to have bistable configurations. This method has been used to improve the performance of three typical cellular materials mostly used in the transportation industry.

Advantages:
- Improved performance of cellular materials
- Bistable configuration
- Prevents deformation

Potential Applications:
- Cellular materials
- Transportation industry

People:
- Zavattieri, Pablo Daniel (Project leader)
- Mankame, Nilesh
- Restrepo, David
- Jorrold, Gordon
- Velay-Lizancos, Mirian
- Zhang, Yunlan
Intellectual Property:

Application Date: March 27, 2020
Type: PCT-Gov. Funding
Country of Filing: WO
Patent Number: (None)
Issue Date: (None)

Application Date: March 25, 2020
Type: Utility-Gov. Funding
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Application Date: March 29, 2019
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:

Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org