Logical Operations in Mass Spectrometry

Track Code: 2018-COOK-68210

Categories:
- Chemical Engineering
- Pharmaceuticals

Keywords:
- Analytical Instrumentation
- Chemical Engineering
- Chemical Weapons
- Chemistry and Chemical Analysis
- Illicit Drugs
- Ion Traps
- Pharmaceuticals
- Structural Elucidation
- Tandem Mass Spectrometry

The information in tandem mass spectrometry (MS/MS) is a three-dimensional data domain which, as of right now, can only be accessed by zero or 1-dimensional experiments that explore a 2-dimensional data domain. These traditional MS/MS scans might require the sampling of multiple ion populations to answer structural questions. A method that could explore a 3-dimensional data domain following a single ion injection event would provide more options to explore the data space.

Researchers at Purdue University have developed a new methodology for operating a mass spectrometer that provides efficient routes from the large block of MS/MS data to answer particular structural questions. It is a major conceptual extension of MS/MS that allows experiments which explore the 3-dimensional data domain of MS/MS. Only data space relevant to the question is explored, minimizing time and ion utilization. This methodology is particularly valuable for ion traps and miniature in situ mass spectrometers, but the concepts could readily be extended to other types of mass spectrometers including triple quadrupoles.

Advantages:
- Extends power of MS/MS experiments
- Provides more options to explore data space
- Minimizes time and ion utilization

Potential Applications:
- Miniature instruments
- Ion traps
- Multi-analyzer instruments

People:
- Cooks, Robert Graham (Project leader)
- Snyder, Dalton Thomas
- Szalwinski, Lucas J

Intellectual Property:

Application Date: March 18, 2019
Type: PCT-Patent
Country of Filing: WO
Patent Number: (None)
Issue Date: (None)

Application Date: March 23, 2018
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org