Live Cell Conjugation Chemistry for Imaging, Sensing, Biomanufacturing, and Cell Therapy

Track Code: 2018-CHOP-68209

Categories:
- Biotechnology
- Medical/Health

Keywords:
- Biotechnology
- Drug Conjugates
- Drug Delivery
- Imaging
- Medical/Health

Surface modification of live cells has many biomedical and therapeutic applications, such as live cell imaging and cell therapy. The current approaches have limitations including poor stability over time and incompatibility with mammalian cells due to toxicity. There is a need for a new technology that improves surface modification of live cells.

Researchers at Purdue University have developed a new technology that enables surface modification of live mammalian cells. This cell-modification technology has applications in live cell imaging, manufacturing of cell therapies, enhancement of cells for therapeutic applications, cell-drug conjugation for enhanced killing of cancer cells, and drug delivery in a pH dependent manner to sites of inflammation. This technology conjugates small molecules, proteins, fluorophores, and PET tracers to live cells without nanoparticles or other vehicles.

Advantages:
- Conjugation to cell membranes without killing cells
- Functionalizes living cells with components such as small molecules, proteins, fluorophores, and PET tracers
- No use of nanoparticles or other vehicles

Potential Applications:
- Cell membrane imaging
- Enhanced cell therapy
- Production of therapeutic cells

People:
- Chopra, Gaurav (Project leader)

Intellectual Property:

Application Date: April 17, 2019
Type: PCT-Patent
Country of Filing: WO
Patent Number: (None)
Issue Date: (None)

Application Date: April 17, 2018
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org