Antibacterial Agents Against Methicillin- and Vancomycin-Resistant Bacteria

Track Code: 2018-SINT-68199

Categories:
- Biotechnology
- Medical/Health

Keywords:
- Antibiotic Resistance
- Bacteriostatic
- Biotechnology
- Medical/Health
- Multidrug-resistance Bacteria

The discovery and development of antibiotics revolutionized health care in such a way that bacterial infections, which were otherwise deadly, could be treated; however, this was met with a rapid development of resistant bacterial strains that rendered many antibiotics ineffective. Consequently, millions of people are infected with drug-resistant bacterial strains yearly resulting in thousands of deaths. Efforts need to be directed towards identifying and developing novel structures as antibacterial agents with possibly novel mechanisms of action.

Researchers at Purdue University have identified compounds with potent antibacterial activities. The most potent compounds inhibited growth of various-resistant Gram-positive bacterial pathogens. Some compounds were active against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus (VISA and VRSA respectively), and vancomycin-resistant Enterococcus faecalis (VRE). Through resistance generation experiments it was revealed that MRSA could not develop resistance to one of these compounds.

Advantages:
- Compounds can kill methicillin and vancomycin-resistant bacteria
- No resistance from MRSA
- Potent activity against drug-resistant Gram-positive pathogens*

Potential Applications:
- Pharmaceuticals/biotech companies
- Animal medicine
- Bacterial burden in skin wound infections
Related Publications:
Clement Opoku-Temeng et al., N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria
European Journal of Medicinal Chemistry, 2018
https://doi.org/10.1016/j.ejmech.2018.06.023

People:
- Sintim, Herman O (Project leader)
- Mohammad, Haroon Taj
- Naclerio, George
- Opoku-Temeng, Clement
- Seleem, Mohamed

Intellectual Property:

Application Date: March 29, 2019
Type: PCT-Patent
Country of Filing: WO
Patent Number: (None)
Issue Date: (None)

Application Date: April 12, 2018
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org