More than 200,000 cases of breast cancer are diagnosed each year in the United States. The most aggressive type of breast cancer, known as triple negative breast cancer (TNBC), disproportionately affects young premenopausal women of African-American or Hispanic descent. Chemotherapy remains the only treatment for TNBC; however, chemotherapy does not specifically target cancer cells, causing debilitating side effects. A new, targeted therapy is needed to treat TNBC without adverse effects.

Researchers at Purdue University have developed a new technology that could change how breast cancer is treated. The researchers have developed new drug candidates that are potent at lower concentrations than chemotherapy. The technology employs molecules that are selectively taken up by cancer cells and activated by light. In vitro, this therapeutic drug is photoactive at the nanomolar range with an appropriate light dose adjustment and has no observable toxicity when not exposed to light. This targeted therapy promises to reduce the dosage of drug needed to treat TNBC and effectively reduce side effects.

Advantages:
- Reduced adverse effects
- Targeted therapy
- Potent at low concentrations

Potential Applications:
- Breast cancer
- Cancer therapeutics

Related Publication:
Photodynamic Activity of Vitamin-Chlorin Conjugates at Nanomolar Concentrations against Triple-Negative Breast Cancer Cells
ACS Omega 2019, 4, 2, 2907-2920
DOI: 10.1021/acsomega.8b02323

People:
- Isaac-Lam, Meden Frue (Project leader)

Intellectual Property:

Application Date: December 14, 2018
Type: Utility Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Application Date: January 23, 2018
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org