Non-Oxidative Catalytic Conversion of Methane to Hydrocarbons

Track Code: 2018-VARM-68034

Categories:
- Chemical Engineering
- Chemistry and Chemical Analysis

Keywords:
- Catalyst
- Chemical Engineering
- Chemistry and Chemical Analysis
- Ethylene
- Hydrocarbons
- Hydrogen
- Natural Gas
- Plastics

Methane, the main component of natural gas, is an abundant fossil fuel resource, widely distributed around the globe. The abundance of methane on Earth makes it an attractive alternative source for energy and chemicals instead of petroleum. Catalytic transformation of methane to value-added chemicals such as ethylene, benzene, methanol, and formaldehyde plays an important role in methane utilization. Various methods have been considered for the conversion of methane to higher hydrocarbons and oxygenates because of its potential for a wide range of products (e.g. plastics, resins); however, over-oxidation of CO/CO2 has been a challenge, while non-oxidative conversions of methane result in unavoidable coke formation and limited catalyst lifetime. There is need of a method for the conversion of methane with high selectivity.

Researchers at Purdue University have developed a method for producing hydrocarbon and hydrogen from methane using a tubular reactor. This catalytic process is non-oxidative and produces hydrocarbons with high selectivity (greater than 90 percent) without CO2 formation, while hydrogen is generated as a byproduct. The catalysts exhibit stable performance with no deactivation observed over an 8-hour test. This technology would be used to convert a widely abundant resource into precursor components for a broad variety of products such as plastics and resins.

Advantages:
- High selectivity
- Stable
- Long lifetime

Potential Applications:
- Plastics
- Resins

People:
- Varma (DECEASED), Arvind (Project leader)
- Xiao, Yang

Intellectual Property:

- **Application Date:** September 19, 2018
 - **Type:** Utility Patent
 - **Country of Filing:** United States
 - **Patent Number:** 10,450,247
 - **Issue Date:** October 22, 2019

- **Application Date:** September 20, 2017
 - **Type:** Provisional-Patent
 - **Country of Filing:** United States
 - **Patent Number:** (None)
 - **Issue Date:** (None)

- **Application Date:** September 13, 2017
 - **Type:** Provisional-Patent
 - **Country of Filing:** United States
 - **Patent Number:** (None)
 - **Issue Date:** (None)

Contact OTC:
- Purdue Office of Technology Commercialization
 1801 Newman Road
 West Lafayette, IN 47906

- **Phone:** (765) 588-3475
- **Fax:** (765) 463-3486
- **Email:** otcip@prf.org