On-Site Diagnosis of Traumatic Brain Injury

Track Code: 2017-RHOA-67992

Categories:
- Biomedical Engineering
- Mechanical Engineering

Keywords:
- Biomarkers
- Biomedical Engineering
- Mechanical Engineering
- Medical/Health
- Micro & Nanotechnologies
- Microresonator
- Proteins
- Traumatic Brain Injury

Microelectromechanical resonators enable sensitive, inexpensive detection of biomarkers, which are indicators of specific diseases, infections, or other medical conditions. However, the detection of s100B, a protein biomarker secreted in the presence of a traumatic brain injury (TBI), is a difficult task to manage. There are numerous methods for identifying biomarkers, but most dependable methods are cumbersome and involve multiple, time-consuming steps that severely limit on-site diagnosis. There is need for a method of detecting biomarkers easily and practically.

Researchers at Purdue University have developed a novel functionalization technique that utilizes a piezoelectrically induced resonant microsystem, a promising medical diagnostic tool with high sensitivity. A plate-style resonator is used to sense biomarkers, including s100B, by detecting changes in mass due to biomarkers. The mechanical resonator demonstrates simple, yet powerful sensor functionality. This could be a feasible solution for successfully diagnosing potential TBI victims at the time of injury.

Advantages:
- Mechanical, label-free sensing
- Provides high-sensitivity sensing in a fraction of the time
- Portable, can use on-site
- Requires only a small amount of fluid for testing
- Allows for dry sensing, which is advantageous for single-use/on-site diagnostic applications

Potential Applications:
- Medical tools for TBI diagnosis
Related Publications:

People:
- Rhoads, Jeffrey Frederick (Project leader)
- Bajaj, Nikhil
- Chiu, George Tsu-Chih
- Murray, Allison Kelly
- Nauman, Eric A
- Tweardy, Mackenzie
- Wadas, Michael

Intellectual Property:

Application Date: July 19, 2018
Type: Utility Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Application Date: July 19, 2017
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org