Method and Process to Fabricate Hydrophobic Microchannels

Back to all technologies
Download as PDF
2017-SHIN-67659
Hydrophobic polymer surfaces use surface roughness and textures to enhance hydrophobicity. The flow of fluids through device channels is usually controlled by external flow control devices, such as pumps and pressure generators; however, when flow rates through individual channels in the microfluidic device are varied, internal flow controls may be required. When it is not desirable to add flow control devices, the channel wall may be modified chemically or structurally. The many disadvantages of chemical treatment include the cost of procuring, storing, handling, and disposing chemicals; may make device unfit for some applications due to unwanted chemical reactions; and chemical coatings are prone to being washed away or wearing out over time. There is, therefore, a lack of a quick and inexpensive fabrication techniques to create microfluidic devices having channels with controllable flow rate without the use of chemical treatment or complex flow control devices.

Researchers at Purdue University have developed a new method of creating hydrophobic surfaces on polymers and metals for use in fabricating microfluidic devices with structured inner wall surfaces that provides control of flow rate in microfluidic channels. It may be used for applications where it is desired to have channels with a controllable flow rate, for microfluidic devices in which different channels have a different flow rate, or to separate different fluids or particles passing through the device. This technology may also be used in heat exchangers by removing condensed water drops, improving the heat transfer efficiency.

Advantages:
-Creates hydrophobic surfaces on polymers and metals
-Flow rate control and pressure control valves in fluidic channels
-Saves the cost associated with chemical treatment

Potential Applications:
-Cell biological research
-DNA analysis
-Inkjet printer heads
-Fuel cells
-Optofluidics
-Heat exchangers
Oct 12, 2017
Utility Patent
United States
(None)
(None)

Oct 13, 2016
Provisional-Patent
United States
(None)
(None)
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org