Relay Electrospray Ionization - Ultrasmall Volume Analysis for Mass Spectrometry

Track Code: 2015-COOK-67113

Categories:
- Chemical Engineering
- Chemistry and Chemical Analysis

Keywords:
- Chemical Engineering
- Chemistry and Chemical Analysis
- Electrospray
- Ionization
- Mass Spectrometry

Accurately assessing an extremely small quantity of a substance is a constant challenge for researchers in many fields, including biology and chemistry. Electrospray ionization is a well-established technique that has existed for decades and has applications in multiple fields, including mass spectrometry and material analysis/creation. The traditional method of electrospray ionization involves applying an electrical charge to a substance, which creates an aerosol of charged droplets of the substance that may then be analyzed. However, the electrical charge also creates opportunities for the solution to cling to the apparatus, creating dead volume, which may require time consuming cleaning procedures to eliminate carryover, making extremely small volume sampling difficult.

Researchers at Purdue University have developed a new method of electrospray for ultrasmall volume sampling and analysis known as the relay electrospray ionization technique. The design is focused upon the on-demand injection of electrically charged ions onto the outside surface of a nanocapillary. The resulting passage of electrical charge from the injected ions to the substance creates an immediate electrospray from the capillary, resulting in no dead volumes. By moving secondary capillaries in an automated fashion, high throughput sample screening and analysis is enabled. Thus, the problems of the solution clinging to the apparatus, dead volume creation, the need for time consuming cleaning procedures to eliminate carryover, and small volume sampling are dealt with under this new system.

Advantages:
- Samples exceptionally small amounts of matter accurately
- Integrated, simplified small volume analysis
- On-demand, controlled chemical reactions in the primary and relay ion sources
- Eliminates carryover and time consuming cleaning procedures
Potential Applications:
- Biology
- Chemical analysis
- Medical/Health

People:
- Cooks, Robert Graham (Project leader)
- Hollerbach, Adam
- Li, Anyin

Intellectual Property:

Application Date: September 7, 2017
Type: NATL-Patent
Country of Filing: United States
Patent Number: 10,242,856
Issue Date: March 26, 2019

Application Date: February 1, 2019
Type: CON-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Application Date: March 9, 2016
Type: PCT-Patent
Country of Filing: WO
Patent Number: (None)
Issue Date: (None)

Application Date: February 10, 2016
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Application Date: March 9, 2015
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906