Method for Enhancing Contrast in Protein Crystal Imaging

Track Code: 2014-SIMP-66857

Categories:
- Chemical Engineering
- Chemistry and Chemical Analysis

Keywords:
- Chemical Engineering
- Chemistry and Chemical Analysis
- Microscopy
- Proteins

Recently, due to the steep annual growth rate of approximately 25 percent of new protein crystal structures entered into the protein data bank, a need for high throughput technologies for protein crystal analysis throughout the entire structure determination pipeline has been realized. Analysis of proteins with high intrinsic fluorescence can be made using current methods. For proteins that do not exhibit intrinsic fluorescence, such as insulin, UV laser-stimulated fluorescence is used for imaging. This method has been shown to damage disulfide bonds within the protein due to exposing the protein crystals to a 266nm excitation laser.

Researchers at Purdue University have developed a method for intercalating dye into the protein crystals to extend the detection range for second harmonic generation (SHG) microscopy and enhance signal-to-noise (S/N) images. This method uses SHG active dyes to enhance the SHG response of protein crystals. By intercalating SHG active dyes into the formed protein crystal, the dyes adopt a well-ordered orientation within the hydrophobic regions of the protein crystal, thus yielding a strong SHG response. By intercalating SHG active dyes into the protein crystal, a higher protein crystal coverage by SHG can be realized along with lower integration times for high throughput analysis of protein nanocrystals. Furthermore, the dye is added to the crystal post-crystallization, so it does not have the opportunity to influence the folding structures of the protein.

Advantages:
- Extend the detection range for SHG microscopy
- Ability to see several orders of magnitude increase in SHG activity of dark protein crystals
- Dye does not influence the folding structures of the protein

Potential Applications:
- SHG Microscopy

Related Publications:

People:
- Simpson, Garth Jason (Project leader)
- Newman, Justin Allen
- Pogranichniy, Nicholas Roman
- Scarborough, Nicole Mulready

Intellectual Property:

Application Date: September 5, 2017
Type: NATL-Patent
Country of Filing: United States
Patent Number: 10,113,965
Issue Date: October 30, 2018

Application Date: September 27, 2017
Type: NATL-Patent
Country of Filing: European Patent
Patent Number: (None)
Issue Date: (None)

Application Date: March 4, 2016
Type: PCT-Patent
Country of Filing: WO
Patent Number: (None)
Issue Date: (None)

Application Date: March 6, 2015
Type: Provisional-Patent
Country of Filing: United States
Patent Number: (None)
Issue Date: (None)

Contact OTC:
Purdue Office of Technology Commercialization
1801 Newman Road
West Lafayette, IN 47906

Phone: (765) 588-3475
Fax: (765) 463-3486
Email: otcip@prf.org