64851 | |
Present micropumping technologies, e.g., electroosmotic (EOF), electrohydrodynamic (EHD), and ferrohydrodynamic micropumps, suffer from requirements of very high working voltages, a gradient in the electrical property of the working fluids, or ferromagnetic fluids with high conductivities. New technology is needed to realize effective fluid delivery for electronics cooling and general microfluidic applications. Researchers at Purdue University have developed a novel microfluidic pumping scheme based on dielectrophoresis, which enables precise flow actuation and control for applications in electronics cooling and biological analysis. It involves no moving parts and is reliable over long-term usage. When this technique is used in combination with nanofluids, the nanoparticles act as a fluid mover and the superior thermal transport properties of the nanofluids can be utilized to enhance heat transfer simultaneously. Advantages: -Does not require high working voltages to function -Very reliable over long-term use Potential Applications: -Microelectronics -Nanoelectronics |
|
|
|
Nov 5, 2012
DIV-Patent
United States
8,470,151
Jun 25, 2013
Aug 20, 2008
Utility Patent
United States
8,308,926
Nov 13, 2012
Aug 20, 2007
Provisional-Patent
United States
(None)
(None)
|
|
Purdue Office of Technology Commercialization The Convergence Center 101 Foundry Drive, Suite 2500 West Lafayette, IN 47906 Phone: (765) 588-3475 Fax: (765) 463-3486 Email: otcip@prf.org |